International Baccalaureate Baccalauréat International Bachillerato Internacional 22137101

FURTHER MATHEMATICS
STANDARD LEVEL

PAPER 1

Monday 20 May 2013 (afternoon)
1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the Mathematics HL and Further Mathematics SL information booklet is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, for example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 12]
(a) (i) Use the Euclidean algorithm to find $\operatorname{gcd}(6750,144)$.
(ii) Express your answer in the form $6750 r+144 s$ where $r, s \in \mathbb{Z}$. [6 marks]
(b) Consider the base 15 number CBA , where $\mathrm{A}, \mathrm{B}, \mathrm{C}$ represent respectively the digits ten, eleven, twelve.
(i) Write this number in base 10 .
(ii) Hence express this number as a product of prime factors, writing the factors in base 4.
2. [Maximum mark: 12]
G is a group. The elements $a, b \in G$, satisfy $a^{3}=b^{2}=e$ and $b a=a^{2} b$, where e is the identity element of G.
(a) Show that $(b a)^{2}=e$. [3 marks]
(b) Express $(b a b)^{-1}$ in its simplest form.

Given that $a \neq e$,
(c) (i) show that $b \neq e$;
(ii) show that G is not Abelian.
3. [Maximum mark: 12]
(a) A triangle T has sides of length 3, 4 and 5 .
(i) Find the radius of the circumscribed circle of T.
(ii) Find the radius of the inscribed circle of T.
(b) A triangle U has sides of length 4,5 and 7 .
(i) Show that the orthocentre, H , of U lies outside the triangle.
(ii) Show that the foot of the perpendicular from H to the longest side divides it in the ratio 29:20.
[6 marks]
4. [Maximum mark: 13]
(a) Find the general solution of the differential equation $\left(1-x^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=1+x y$, for $|x|<1$.
(b) (i) Show that the solution $y=f(x)$ that satisfies the condition $f(0)=\frac{\pi}{2}$ is

$$
f(x)=\frac{\arcsin x+\frac{\pi}{2}}{\sqrt{1-x^{2}}} .
$$

(ii) Find $\lim _{x \rightarrow-1} f(x)$.
5. [Maximum mark: 11]

Let X_{k} be independent normal random variables, where $\mathrm{E}\left(X_{k}\right)=\mu$ and $\operatorname{Var}\left(X_{k}\right)=\sqrt{k}$, for $k=1,2, \ldots$

The random variable Y is defined by $Y=\sum_{k=1}^{6} \frac{(-1)^{k+1}}{\sqrt{k}} X_{k}$.
(a) (i) Find $\mathrm{E}(Y)$ in the form $p \mu$, where $p \in \mathbb{R}$.
(ii) Find k if $\operatorname{Var}\left(X_{k}\right)<\operatorname{Var}(Y)<\operatorname{Var}\left(X_{k+1}\right)$.
(b) A random sample of n values of Y was found to have a mean of 8.76.
(i) Given that $n=10$, determine a 95% confidence interval for μ.
(ii) The width of the confidence interval needs to be halved. Find the appropriate value of n.

